A personal identification number ( PIN; sometimes RAS syndrome a PIN code or PIN number) is a numeric (sometimes alpha-numeric) passcode used in the process of authenticating a user accessing a system.
The PIN has been the key to facilitating the private data exchange between different data-processing centers in computer networks for financial institutions, governments, and enterprises. PINs may be used to authenticate banking systems with cardholders, governments with citizens, enterprises with employees, and computers with users, among other uses.
In common usage, PINs are used in ATM or PO transactions, secure access control (e.g. computer access, door access, car access), internet transactions, or to log into a restricted website.
Mohamed M. Atalla invented the first PIN-based hardware security module (HSM), dubbed the "Atalla Box," a security system that encrypted PIN and ATM messages and protected offline devices with an un-guessable PIN-generating key. In 1972, Atalla filed for his PIN verification system, which included an encoded card reader and described a system that utilized encryption techniques to assure telephone link security while entering personal ID information that was transmitted to a remote location for verification.
He founded Atalla Corporation (now Utimaco Atalla) in 1972, and commercially launched the "Atalla Box" in 1973. The product was released as the Identikey. It was a card reader and customer identification system, providing a terminal with plastic card and PIN capabilities. The system was designed to let and thrift institutions switch to a plastic card environment from a passbook program. The Identikey system consisted of a card reader console, two customer , intelligent controller and built-in electronic interface package. The device consisted of two keypads, one for the customer and one for the teller. It allowed the customer to type in a secret code, which is transformed by the device, using a microprocessor, into another code for the teller. During a transaction, the customer's account number was read by the card reader. This process replaced manual entry and avoided possible key stroke errors. It allowed users to replace traditional customer verification methods such as signature verification and test questions with a secure PIN system. In recognition of his work on the PIN system of information security management, Atalla has been referred to as the "Father of the PIN".
The success of the "Atalla Box" led to the wide adoption of PIN-based hardware security modules. Its PIN verification process was similar to the later IBM 3624. By 1998 an estimated 70% of all ATM transactions in the United States were routed through specialized Atalla hardware modules, and by 2003 the Atalla Box secured 80% of all ATM machines in the world, increasing to 85% as of 2006. Atalla's HSM products protect 250million card transactions every day as of 2013, and still secure the majority of the world's ATM transactions as of 2014.
although banks in Switzerland and many other countries require a six-digit PIN.
Natural PINs cannot be user selectable because they are derived from the PAN. If the card is reissued with a new PAN, a new PIN must be generated.
Natural PINs allow banks to issue PIN reminder letters as the PIN can be generated.
The offset can be stored either on the card track data, or in a database at the card issuer.
To validate the PIN, the issuing bank calculates the natural PIN as in the above method, then adds the offset and compares this value to the entered PIN.
The VISA method takes the rightmost eleven digits of the PAN excluding the checksum value, a PIN validation key index (PVKI, chosen from one to six, a PVKI of 0 indicates that the PIN cannot be verified through PVS) and the required PIN value to make a 64-bit number, the PVKI selects a validation key (PVK, of 128 bits) to encrypt this number. From this encrypted value, the PVV is found.
To validate the PIN, the issuing bank calculates a PVV value from the entered PIN and PAN and compares this value to the reference PVV. If the reference PVV and the calculated PVV match, the correct PIN was entered.
Unlike the IBM method, the VISA method does not derive a PIN. The PVV value is used to confirm the PIN entered at the terminal, was also used to generate the reference PVV. The PIN used to generate a PVV can be randomly generated, user-selected or even derived using the IBM method.
Some systems set up default PINs and most allow the customer to set up a PIN or to change the default one, and on some a change of PIN on first access is mandatory. Customers are usually advised not to set up a PIN-based on their or their spouse's birthdays, on driver license numbers, consecutive or repetitive numbers, or some other schemes. Some financial institutions do not give out or permit PINs where all digits are identical (such as 1111, 2222, ...), consecutive (1234, 2345, ...), numbers that start with one or more zeroes, or the last four digits of the cardholder's social security number or birth date.
Many PIN verification systems allow three attempts, thereby giving a card thief a putative 0.03% probability of guessing the correct PIN before the card is blocked. This holds only if all PINs are equally likely and the attacker has no further information available, which has not been the case with some of the many PIN generation and verification algorithms that financial institutions and ATM manufacturers have used in the past.
Research has been done on commonly used PINs. The result is that without forethought, a sizable portion of users may find their PIN vulnerable. "Armed with only four possibilities, hackers can crack 20% of all PINs. Allow them no more than fifteen numbers, and they can tap the accounts of more than a quarter of card-holders."
Breakable PINs can worsen with length, to wit:
Note that this should not be confused with software-based passcodes that are often used on smartphones with Lock screen: these are not related to the device's cellular SIM card, PIN and PUC.
|
|